Laboratory 1

(Due date: **002/003/007/010**: Feb. 1st, **004**: Feb. 2nd, **006/008**: Feb. 3rd, **011**: Feb. 5th)

OBJECTIVES

- ✓ Introduce VHDL Coding for FPGAs.
- ✓ Learn to write testbenches in VHDL.
- ✓ Learn the Xilinx FPGA Design Flow with the Vivado HL: Synthesis, Simulation, and Bitstream Generation.
- ✓ Learn how to assign FPGA I/O pins and download the bitstream on the Nexys[™] A7-50T Board.

VHDL CODING

✓ Refer to the <u>Tutorial</u>: <u>VHDL for FPGAs</u> for a list of examples.

NEXYSTM A7-50T FPGA TRAINER BOARD SETUP

- The Nexys A7-50T Board can receive power from the Digilent USB-JTAG Port (J6). Connect your Board to a computer via the USB cable. If it does not turn on, connect the power supply of the Board.
- Nexys A7-50T documentation: Available in <u>class website</u>.

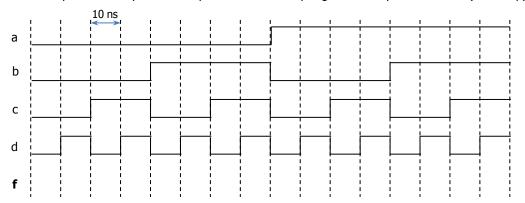
FIRST ACTIVITY (100/100)

DESIGN PROBLEM

- A lock is opened (f=1) only for three combinations of four switches: 1110, 0110, 1011, where '1' represents the ON state of the lock and '0' the OFF state. The state of the switches is represented by the Boolean variables a, b, c, d.
 - ✓ Complete the truth table for this circuit: (5 pts)
 - ✓ Derive (simplify if possible) the Boolean expression: (10 pts)

f =

a	b	С	d	f
0	0	0	0	
0	0	0	1	
0	0	1	0	
0	0	1	1	
0	1	0	0	
0	1	0	1	
0	1	1	0	
0	1	1	1	
1	0	0	0	
1	0	0	1	
1	0	1	0	
1	0	1	1	
1	1	0	0	
1	1	0	1	
1	1	1	0	
1	1	1	1	


PROCEDURE

- Vivado Design Flow for FPGAs: complete the following steps (follow the order strictly): (85 pts)
 - ✓ Create a new Vivado Project. Select the corresponding Artix-7 FPGA device as per the table:

Kit	Artix-7 FPGA Device	Master XDC File	Comments
Nexys A7-50T	XC7A50T-1CSG324I	Nexys-A7-50T-Master.xdc	Recommended board.
Nexys A7-100T	XC7A100T-1CSG324C	Nexys-A7-100T-Master.xdc	
Basys 3	XC7A35T-1CPG236C	Basys-3-Master.xdc	Suggested if you only take ECE2700
Nexys 4	XC7A100T-1CSG324C	Nexys4 Master.xdc	

✓ Write the VHDL code that implements the simplified Boolean expression. Synthesize your circuit (Run Synthesis).

- ✓ Write the VHDL testbench to test every possible combination of the inputs.
 - The figure below provides a suggestion of what the input waveform described by your testbench should look like. Complete the output f so that you can compare it with the output generated by the simulator (next step).

- ✓ Perform Functional Simulation (Run Simulation → Run Behavioral Simulation). **Demonstrate this to your TA.**
- ✓ I/O Assignment: Generate the XDC file. Download the corresponding constraints file (XDC) of your board and edit it.
 - Use sw3, sw2, sw1, sw0 as inputs a, b, c, d respectively. Use LED0 as the output f.

Board pin names	SW3	SW2	SW1	SW0	LED0	
Signal names in code	а	b	С	d	f	

- The board pin names (SW0-SW3, LED0) are used by all the listed boards (Nexys A7-50T/A7-100T, Basys 3, Nexys 4/DDR). The I/Os listed here are all active high.
- ✓ Implement your design (Run Implementation).
- ✓ Do <u>Timing Simulation</u> (Run Simulation → Run Post-Implementation Timing Simulation). **Demonstrate this to your TA.**
- ✓ Generate the bitstream file (Generate Bitstream).
- ✓ Download the bitstream on the FPGA (Open Hardware Manager) and test. Demonstrate this to your TA.
- Submit (as a .zip file) the generated files: VHDL code, VHDL testbench, and XDC file
 to Moodle (an assignment will be created). DO NOT submit the whole Vivado Project.
 - ✓ Your .zip file should only include one folder. Do not include subdirectories.
 - It is strongly recommended that all your design files, testbench, and constraints file be located in a single directory. This will allow for a smooth experience with Vivado.

la	b1	
	top.vhd	Design file
	top_tb.vhd	Testbench file
	lab1.xdc	Constraints file

TA signature:	Date:	
i A Signatare	 Date:	